RSS
 

Posts Tagged ‘electricity’

The fanless spinning heatsink: more efficient and immune to dust

12 Jul

There’s a fundamental flaw with fan-and-heatsink cooling systems: no matter how hard the fan blows, a boundary layer of motionless, highly-insulating air remains on the heatsink. You can increase the size of the heatsink and you can blow more air, but ultimately the boundary layer prevents the system from being efficient; it’s simply a physical limitation of fan-and-heatsink cooling systems in specific, and every kind of air-cooled heat exchanger in general, including air conditioning and refrigeration units.

But what if you did away with the fan? What if the heatsink itself rotated? Well, believe it or not, rotating the heat exchanger obliterates the boundary layer, removes the need for a fan, and it’s so efficient that it can operate at low and very quiet speeds. Ladies and gentlemen, I give you the Air Bearing Heat Exchanger [PDF]. Developed by Jeff Koplow, a researcher at the US government’s Sandia National Laboratories, the new heatsink (which has also been dubbed the “Sandia Cooler”) basically resembles a big, metal fan. The cooler consists of a static metal baseplate, which is connected to the CPU, GPU, or other hot object, and a finned, rotating heat exchanger that are cushioned by a thin (0.001-inch) layer of air. As the metal blades spin, centrifugal force kicks up the air and throws it up and outwards, much like an impeller, creating a cooling effect.

rotating heat exchangerThis new technique is so efficient that if these heat exchangers can find widespread adoption in computers and air conditioning units, Koplow estimates that the total US electricity consumption could drop by 7%. Furthermore, if you’re a computer geek, there’s another big advantage of the Air Bearing Heat Exchanger: it’s intrinsically immune to the build up of dust and detritus. The Sandia Cooler may also be the technology that smashes down the “Thermal Brick Wall” that is preventing computer chips from moving beyond 3GHz.

So when can you get your hands on one? Koplow is now working on a design that can be mass-produced — and hopefully he’ll soon be able to bring this awesome piece of technology to market.

Read more at New Scientist or read the research paper

 
 

IBM develops ‘instantaneous’ memory, 100x faster than flash

29 Jun
You've got to hand it to IBM's engineers. They drag themselves into work after their company's 100th birthday party, pop a few Alka-Seltzers and then promptly announce yet another seismic invention. This time it's a new kind of phase change memory (PCM) that reads and writes 100 times faster than flash, stays reliable for millions of write-cycles (as opposed to just thousands with flash), and is cheap enough to be used in anything from enterprise-level servers all the way down to mobile phones. PCM is based on a special alloy that can be nudged into different physical states, or phases, by controlled bursts of electricity. In the past, the technology suffered from the tendency of one of the states to relax and increase its electrical resistance over time, leading to read errors. Another limitation was that each alloy cell could only store a single bit of data. But IBM employees burn through problems like these on their cigarette breaks: not only is their latest variant more reliable, it can also store four data bits per cell, which means we can expect a data storage "paradigm shift" within the next five years. Combine this with Intel's promised 50Gbps interconnect, which has a similar ETA, and data will start flowing faster than booze from an open bar on the boss's tab. There's more detailed science in the PR after the break, if you have a clear head.

Continue reading IBM develops 'instantaneous' memory, 100x faster than flash

IBM develops 'instantaneous' memory, 100x faster than flash originally appeared on Engadget on Thu, 30 Jun 2011 00:01:00 EDT. Please see our terms for use of feeds.

Permalink   |   | Email this | Comments
 
 

This Generator the Size of a Pencil Tip Shakes Up Big Power [Electricity]

02 Dec
Japanese researchers have cooked up a minuscule kinetic battery capable of generating more energy than anything of its kind. Through only the slightest vibrations, the tiny device cranks out 22 milliwatts—20 times more than anything similar before it. More »


 
 

Is Our Electrical Grid Dying?

09 Jul


The Vincent substation along California’s State Route 14 is crucial to bringing wind and solar power to the Los Angeles Basin. Photo: Joe McNally

If you think about it, it’s a marvel of modern engineering that most of us aren’t even aware of "The Grid". Yet it is what made modern life possible. When you watch TV, work on the computer, or even turn the light on, you’re using the electricity and that juice comes to your house via the electrical grid.

"The electrical grid is still basically 1960s technology," says physicist Phillip F. Schewe, author of The Grid. "The Internet has passed it by. The meter on the side of your house is 1920s technology." Sometimes that quaintness becomes a problem. On the grid these days, things can go bad very fast.

When you flip a light switch, the electricity that zips into the bulb was created just a fraction of a second earlier, many miles away. Where it was made, you can’t know, because hundreds of power plants spread over many states are all pouring their output into the same communal grid. Electricity can’t be stored on a large scale with today’s technology; it has to be used instantly. At each instant there has to be a precise balance between generation and demand over the whole grid. In control rooms around the grid, engineers constantly monitor the flow of electricity, trying to keep voltage and frequency steady and to avoid surges that could damage both their customers’ equipment and their own.

When I flip a switch at my house in Washington, D.C., I’m dipping into a giant pool of electricity called the PJM Interconnection. PJM is one of several regional operators that make up the Eastern grid; it covers the District of Colum bia and 13 states, from the Mississippi River east to New Jersey and all the way down to the Outer Banks of North Carolina. It’s an electricity market that keeps supply and demand almost perfectly matched—every day, every minute, every fraction of a second—among hundreds of producers and distributors and 51 million people, via 56,350 miles of high-voltage transmission lines.

So it should worry you that the grid is sick. America’s electrical grid infrastructure is a patchwork of networks built with antiquated equipments. Over decades, this infrastructure has fallen behind the nation’s ever-growing demand for electricity. So, how do we fix it? (And for those of you who shout "no more oil" should know that our "addiction" to foreign oil has nothing to do with electricity – oil is predominantly used for transportation, not electricity).

Joel Achenbach of National Geographic wrote a fascinating article about the Electrical Grid (with fantastic photos by Joe McNally): Link – Thanks Marilyn!